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AbstrAct
This article is a “back to the future” report card 

on the Internet’s seedling, the Arpanet. The vision 
and goals for the Arpanet are evaluated along 
several aspects of functionality, performance, 
and evolution. The resulting grades suggest what 
direction future evolution might take to allow the 
Internet to evolve into what it was intended to be.

IntroductIon
This issue is about predicting the future of the 
Internet. I’m going to cheat and talk about pre-
dictions of the future from the perspective of 50 
years ago when we were envisioning the net-
work. It’s a cheat, of course, because we now 
know how it turned out. At least we know how 
the first 50 years turned out. This perspective is 
interesting nonetheless because we can gauge 
what happened against what we intended and 
expected. And let me limit your expectations. This 
view is primarily about the technical aspects of 
networking. The current concerns about social 
networking, privacy invasions, spam, fraud, and so 
on appeared quite early but were minor annoy-
ances compared to today’s environment. Those 
of us involved in creating the Arpanet and then 
the Internet were almost totally focused on creat-
ing the capability and getting it to work.

To make this discussion fun and perhaps contro-
versial, I offer a report card along several aspects of 
functionality, performance, and evolution. But first, 
let’s go back in time to the creation of the Arpanet.

The Arpanet was DARPA’s ambitious project to 
connect its computer science research laboratories 
with a general-purpose, highly interactive network. 
These few words — computer science, research 
laboratories, general-purpose, and highly interac-
tive — may seem bland but carry a lot of content.

In its first few years, DARPA’s focus was on 
space technology and other military technologies. 
In 1962 the Information Processing Techniques 
Office (IPTO) was created, with J.C.R. Licklider 
(“Lick”) as the founding director [1].

Although DARPA spent most of its budget on 
fast-paced research aimed at significant results with-
in three to seven years, a small portion of its bud-
get was devoted to long-term investment in two 
basic technologies — material science and com-
puter science — that would pay off over time. Its 
investments in computer science were in the form 
of funding several research laboratories — MIT, 
CMU, the University of California (UC) Berkeley, 
University of Utah, SRI, UC Los Angeles (UCLA), 
and others. The institutional support was important 
but not sufficient. There was also a vision….

the VIsIon
In the early days of computing, from the late 
1940s through the 1950s and early 1960s, com-
puters were expensive and available only to large 
organizations — governments, businesses, and uni-
versities. And it was important to keep them busy 
doing useful work. The idea of a personal com-
puter was nothing but a dream, closer to science 
fiction than a realistic goal.

Commercially, IBM was the dominant comput-
er company. Several other computer companies 
— Burrough’s, Control Data Corporation, NCR, 
Univac, and others — competed as best they 
could. Eventually, they all faded.

These computers were all physically large and 
usually required air conditioning. The large ones 
lived in specially constructed rooms with false floors 
that provided airflow and had room for thick cables.

Keeping them busy meant organizing the 
workload in a fashion that staged a queue of jobs 
for the computer to carry out. The term of art was 
“batch processing.” Programmers prepared pro-
grams by sitting at their desks writing code and 
then copying their programs onto punched cards 
or paper tape. When the computer was ready to 
execute their programs, it read in the program 
and then took however long was necessary to 
compute the results. The output was often printed 
on wide paper and then placed in folders or cub-
byholes for the programmer to retrieve.

Efficiency was paramount. In the earliest days, 
programs were written directly in machine instruc-
tions. When high-order languages were intro-
duced, it was understood these new languages 
would make it easier to write programs. Still, there 
was concern about whether the code generated 
by compilers would be competitive with hand-writ-
ten code. The success of Fortran was due in part 
to the compiler generating code that met that bar.

The astute reader will have noticed I have not 
used the terms “interactive” or “interpretative.” Most 
managers of computers considered it wasteful for 
the computer to wait for a human to decide what 
to do or for the computer to translate source code 
to object code interspersed with doing “real” work.

There was, however, a small portion of the 
computing community who shared a different 
vision. Programming was tedious and prone to 
errors. In a batch processing environment, the pro-
grammer might have to wait several hours or even 
a full day to get results back, only to discover there 
was an error in the program. Suppose — just imag-
ine! — being able to see syntax errors immediately.

Well, as we know, computers have become 
drastically smaller, cheaper, and more available. 
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Everyone reading this article undoubtedly has one 
or more personal computers, some of which are 
called “phones.” But in the mid-1960s, the idea of 
a computer waiting for the human instead of the 
other way around was part of a vision understood 
and pursued in just a few pockets of academia.

The vision was even more ambitious than just 
having a computer at the ready; it included hav-
ing the computer carry some of the mental labor. 
At the extreme end, the catchy phrase “artificial 
intelligence” (AI) conveyed the idea of computers 
thinking, however ill-defined that term might be. 
The early work on AI focused on programs that 
played checkers and chess, solved symbolic alge-
bra and calculus problems, attempted to make 
rudimentary sense of written text, and attempted 
to infer the difference between objects and back-
ground in photos.

Toward the more practical end of the spec-
trum, time-sharing systems were developed and 
fielded. Similarly, interactive, interpretive languag-
es such as LISP and BASIC were developed and 
fielded [2, 3]. In the mid-1960s, these technol-
ogies were in regular use in a few select plac-
es. The difference between those environments 
and the common environments of batch pro-
cessing and efficient use of large computers was 
like night and day. The Arpanet was part of the 
vision of a collaborative environment that sup-
ported interaction between people and comput-
ers, between computers, and, not insignificantly, 
between people.

the report cArd
This report card has three sections. I assign grades 
in three broad areas: functionality, performance, 
and evolution. Each of these has multiple aspects.

FunctIonAlIty
The four aspects are connectivity, protocols, col-
laboration, and extensibility.

Connectivity: Highly interactive computing 
was just the beginning of the vision. Comput-
er-to-computer communication, online libraries, 
and collaboration across research laboratories 
were also part of the vision. How to do all of that 
was not as clear. Some hurdles were obvious; 
additional hurdles emerged later.

There had been a handful of prior experi-
ments to connect computers together. Most were 
unsuccessful, and the others were of limited use 
for a short duration. The one that turned out to 
be the most useful was a connection between 
Lincoln Laboratory in Massachusetts and System 
Development Corporation in California. In addi-
tion to solving the problems of getting two dissim-
ilar computers to interact, the work also provided 
useful data on the error rates of long-distance 
telephone lines.

Finally, in 1965, IPTO decided it was time for a 
large-scale effort to connect the computers across 
the participating laboratories. The short version 
of the decision process, recounted in Hafner’s 
and Lyons’ book Where Wizards Stay Up Late, is 
that Bob Taylor, the head of IPTO, explained the 
concept to his boss, Charles Herzfeld, the director 
of DARPA [4]. Herzfeld approved $1,000,000 on 
the project. The actual process was more detailed 
and extended, and Larry Roberts was recruited 
from Lincoln Laboratory to head up the project. 

The plan evolved over the next few years. The 
key decisions were to use packet switching and 
separate small computers, designated interface 
message processors (IMPs), as routers. Finally, 
in 1968, a formal Request for Quotations (RFQ) 
was issued asking companies to design, build, and 
operate this network. Bolt, Beranek, and Newman 
(BBN) in Massachusetts was selected and began 
work in early 1969.

Although there had been a lot of thought 
regarding the communications subnet, there were 

TABLE 1. Terminology.

ARPA, DARPA — The Defense Advanced Research Projects Agency, was started in 1958 
in response to the Russian launch of the first satellite, Sputnik. When it was started, it was 
inside the Office of the Secretary of Defense (OSD) and was called the Advanced Research 
Projects Agency. In 1972 it was moved out of OSD to become a separate Defense agency 
and its name was changed. This was an administrative change with no change in mission 
or structure. The name changed back briefly to ARPA in the early 1990s and then back 
again a short time later to DARPA. The Arpanet was created when the agency was ARPA, 
and in most writings the name of the network remained the same.

FTP (File Transfer Protocol) was one of the earliest defined protocols. The original spec-
ification was written in 1971 by Abhay and ran on NCP. The protocol was later replaced 
by a TCP/IP version; while still built into several operating systems, it is increasingly 
deprecated across the Internet.

IMP, router — The Arpanet introduced the concept of using a separate computer as a 
router. The term “router” was not yet in use. An Arpanet router was called an IMP, Inter-
face Message Processor.

IPTO (Information Processing Techniques Office) was the office within the Advanced 
Research Projects Agency that funded advanced computer science research in the 1960s 
and 1970s.

Multics (Multiplexed Information and Computing Service) was an influential time-sharing 
system that incorporated advanced memory management and security controls.

NCP — Originally, the abbreviation NCP stood for Network Control Program and referred 
to the software that had to be added to the operating system of the host to communi-
cate with the IMP and implement the host-host protocol between the hosts. Over time, 
the term NCP became repurposed to stand for Network Control Protocol to refer to the 
protocol and not the software.

NWG (Network Working Group) — Originally, this designated a small group of principal 
investigators who advised IPTO management during the 1965-68 design phase of the 
Arpanet design. The same name was then used by the less senior researchers, primarily 
graduate students, who developed the original suite of host-level protocols. The NWG 
evolved over time from around a dozen people in 1968 to a larger and larger group and 
eventually became the Internet Engineering Task Force (IETF).

QUIC is a relatively new protocol created to improve performance for connection-orient-
ed web applications beyond what is possible with TCP.

RFC (Request for Comments) was the term for the informal protocol design memos 
written by the Network Working Group. Although originally expected to be a short-lived 
set of memos, the RFCs continued and became the formal method of publishing protocol 
standards and related articles.

SSH (Secure Shell) was designed as a secure replacement for various insecure remote 
shell protocols; SSH has been a common remote access protocol since 1995.

TCP (Transmission Control Protocol) was the successor to the Network Control Protocol, 
the original host-host protocol. TCP was byte-oriented, provided two-way, i.e., full-duplex, 
communication, error checking, and retransmission if bytes were lost in transmission.

TCP Flag Day — Until 31 December 1982, the hosts on the Arpanet all used the Network 
Control Protocol. Starting on 1 January 1983, the hosts all switched over to Transmission 
Control Protocol and the underlying Internet Protocol (IP).

TIP (Terminal IMP) was an IMP augmented with 63 ports for terminals. The TIP was the 
equivalent of an IMP and host computer that implemented the Telnet protocol to reach 
other hosts on the Arpanet.

UDP (User Datagram Protocol) is a protocol parallel to TCP used when error checking 
and correction are either not necessary or is performed in the application. Unlike TCP, 
UDP does not have handshake dialogues. There is no guarantee of delivery, ordering, or 
duplicate protection.

CROCKER_LAYOUT.indd   119CROCKER_LAYOUT.indd   119 12/30/21   1:51 PM12/30/21   1:51 PMAuthorized licensed use limited to: Universidad Nacional Autonoma De Mexico (UNAM). Downloaded on August 17,2022 at 17:13:27 UTC from IEEE Xplore.  Restrictions apply. 



IEEE Communications Magazine • December 2021120

still areas that needed development. Two of the 
obvious hurdles were the lack of suitable hard-
ware interfaces for communication between com-
puters and the differences in formats and data 
representation.

There were no standard interfaces and no com-
monality across the operating systems. Operating 
systems of the day lived at the centers of their 
respective worlds. They had not been designed 
with a means of peering with other computers, so 
one of our challenges was developing hardware 
interfaces and the software structure to support 
peering relationships across these diverse systems.

Unlike earlier small-scale network projects, the 
Arpanet project involved computers from sev-
eral different vendors. This heterogeneity forced 
the creation of a common hardware interface. 
For the Arpanet, BBN designed a simple bit-se-
rial interface. Each site designed and fabricated 
its half of the connecting hardware. After the 
first several of these were built as ad hoc proj-
ects within the research laboratories, commercial 
interfaces became available for the most common 
machines, notably the Digital Equipment Corpora-
tion (DEC) PDP-10. 

Shortly after the Arpanet project started, there 
was active research on technologies for local area 
networks. The Ethernet design prevailed in the 
marketplace, and Sun Microsystems unveiled its 
initial product line with Ethernet interfaces on all 
its machines. This was a period of vibrant develop-
ment of local area network technology.

Today, every computer comes with one or 
more standardized interfaces with the full expec-
tation it will be interacting with other computers, 
not just peripheral devices. Without question, the 
goal of getting computers connected to other 
computers is a complete success and deserves 
the maximum grade.

Connectivity: A+

Protocols: The software was a different matter. 
I was part of the team of graduate students from 
the initial four Arpanet sites tasked with designing 
the host-level protocols. In a sense, we were the 
customers or users of the Arpanet, but we were 

also the builders of the applications that allowed 
others to use the Arpanet.

We tried to create a set of building blocks that 
would support multiple applications. We expect-
ed others would build on whatever we designed. 
We expected the protocols would be designed 
and implemented as a series of layers. We expect-
ed most of the layers to be optional, to be used if 
they were useful for the application and otherwise 
ignored. These presumptions are at the heart of 
the open, layered architecture that characterizes 
the Internet.

We focused on designing a base layer that 
encompassed a virtual circuit to hide the pack-
etized nature of the underlying communications. 
We expected the simulation of dial-up to support 
login and machine-to-machine file transfer to be 
the applications that would use the base layer. 
These two protocols, Telnet for remote login and 
File Transfer Protocol (FTP), did indeed come into 
existence and have served as primary protocols 
throughout the history of the Internet. Howev-
er, in recent years, Secure Shell (SSH) and QUIC 
have provided substantial improvements in securi-
ty and performance.

The base protocol was initially called the Host-
Host protocol. It later became known as the 
Network Control Protocol (NCP). Its basic con-
struct was a one-directional (“simplex”) bit-serial 
connection, and a pair of these connections was 
required for two-way communication. During the 
period when it was designed, eight-bit bytes had 
not yet become standard. The NCP was replaced 
by the Transmission Control Protocol (TCP) as 
part of the evolution of the Arpanet to a network 
of networks (i.e., the Internet). By that time, eight-
bit bytes had become standard, and bidirectional 
(“full-duplex”) connections in TCP replaced the 
simplex connections in NCP.

An essential feature of both NCP and TCP was 
flow control. The IMP subnet had its own flow 
control to prevent deadlocks due to lack of buffer 
space, but it was clear early in the design phase 
the computers at the ends also needed a mech-
anism to control the consumption of space. We 
provided controls within the NCP and TCP proto-
cols for the receiving side of a connection to sig-
nal how much space was available to the sending 
side. More on this below.

These protocols were remarkably robust and 
hence deserved a strong grade. That said, they 
weren’t perfect, and grading them requires some 
discussion. Here are three parts of the architectur-
al design that didn’t work out as expected:
1. The idea of creating a virtual circuit and 

then simulating a remote terminal connec-
tion looked simple at first, but we soon real-
ized the abstraction of a virtual circuit had a 
weakness. In remote terminal connections, 
the user must have a way of interrupting the 
computer’s operation. The specific method 
varies from one operating system to anoth-
er. Usually, it was a reserved character (e.g., 
control-C, control-Z, or DEL). For “real” 
connections, by either hardwire or dial-up 
circuits, the operating system recognized 
the signal immediately whenever the user 
typed an interrupt character. The virtual cir-
cuits we defined as the bottom layer of the 
protocol stack included a variable amount 

The Timeline

While this article is primarily focused on the original 
Arpanet, parts of this report card are best understood in 
the context of both the Arpanet and the Internet. Here’s 
a very selective and compact timeline.

• 1965-68: Arpanet planning
• August 1968: Request for Quotations for the Interface
   Message Processors (IMPs) and communications subnet
• January 1969: Bolt, Beranek and Newman begins work
   on the IMPs and subnet
• September through December 1969: First four nodes
   installed at UCLA, SRI, UCSB, and Utah
• October 1971: Bake-off at MIT to test interoperability
   of the implementations of NCP and Telnet
• October 1972: Public display of the Arpanet at the
   International Conference on Computer Communication
  (ICCC) meeting in Washington, DC.
• May 1974 first TCP paper
• 1 January 1983: TCP Flag Day

For a more complete timeline, see “A Short History of 
the Internet,” https://www.internetsociety.org/internet/
history-internet/

Unlike earlier small-scale 
network projects, the 

Arpanet project involved 
computers from several 
different vendors. This 

heterogeneity forced the 
creation of a common hard-

ware interface. 
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of buffering. There was no guarantee that a 
character typed by the user would be seen 
immediately — or even eventually — by the 
remote operating system. We therefore had 
to augment the clean, simple abstraction of 
virtual circuits by adding a new channel to 
communicate urgent signals.

2. While we were focused on applications 
based on virtual circuits, others were focused 
on real-time communications, particularly 
packetized speech. For these applications, 
virtual circuits are a poor match. In the tran-
sition from NCP to TCP, a parallel protocol, 
the User Datagram Protocol (UDP), was 
designed that did not include flow control 
and did not attempt to guarantee delivery.

3. In our early thinking about protocols, we 
imagined processes running on multiple 
computers cooperating on a common task. 
We intended the protocol suite to support 
arbitrary peer-to-peer communications, not 
just client-server-style applications. The pro-
tocols do provide this support, but it has 
turned out to be used relatively rarely.
Flow control deserves its own discussion, so 

we close this section on the protocol suite with a 
decent but not perfect grade.

Protocol Suite: B+

Collaboration: A key part of the vision was 
collaboration among researchers. The network 
was envisioned as connecting both computers 
and people. Licklider and Taylor, the first and 
third directors of the (D)ARPA Information Pro-
cessing Techniques Office (IPTO), wrote their 
1968 visionary paper, “The Computer as a Com-
munications Device,” highlighting the focus on 
collaboration [5]. Their opening sentence, “In a 
few years, men [sic] will be able to communicate 
more effectively through a machine than face to 
face,” stated their vision succinctly. 

The DARPA research community enjoyed a 
fair degree of collegiality. The funding came from 
a common source, and the Office encouraged 
collaboration. Although not considered techni-
cally demanding, electronic mail quickly became 
the dominant use of the Arpanet. The prospect 
of highly interactive shared graphics and shared 
creation of documents fired the imagination. 
Douglas Engelbart’s landmark work at SRI, the 
second Arpanet site, combining the invention of 
the mouse, hypertext, and shared access to doc-
uments, was presented at the ACM/IEEE Com-
puter Society Fall Joint Computer Conference in 
San Francisco in December 1968 [6]. It quickly 
became known as the “Mother of All Demos” [7]. 
It would take quite a few years before everyone 
had the same capabilities, but the direction was set 
early on.

The tools and techniques for collaboration are 
still evolving, but it’s fair to say results have been 
spectacular.

Collaboration: A

Extensibility: Collaboration tools are just one 
example of the open-ended and evolving nature 
of the network. The direction set within the 
Arpanet project continued full force into the Inter-
net. Continual change is stressful, though, and 
doesn’t come for free. How well has the protocol 

suite fared under the stresses of extensibility and 
scaling? Extensibility has been good, with many 
new applications and supporting protocols avail-
able. User-level data used to be limited to text; it 
now includes colors, pictures, videos, audio, and 
more. And extensibility has included adaptation 
to multiple languages and cultures, localized ini-
tiatives, and unlimited new applications. I think it’s 
easy to give a very strong grade.

Extensibility: A

perFormAnce
Functionality is essential but not sufficient. Perfor-
mance is also essential. The four aspects of perfor-
mance are interactivity, reliability, scalability, and 
flow control.

Interactivity: One of the key design parame-
ters for the Arpanet was the requirement to deliv-
er a message within a half-second. (“Message” 
in this context was the term used for the unit of 
transfer between a host and an IMP. It was limited 
to about 8000 bits. Messages were subdivided 
into packets of approximately 1000 bits or less 
for transmission over the subnet and reassembled 
into messages at the destination IMP.) As noted 
above, the Arpanet connected the several DAR-
PA-supported computer science research labs. 
Each of these labs had highly interactive time-
shared computers. The Arpanet thus extended 
those environments. It would have been possible 
to build a network that was much less interac-
tive for the movement of email and files. Indeed, 
UUNET and BITNET were successful examples 
of this sort of design [8, 9]. However, the goal 
for Arpanet included the highly interactive use of 
remote computers and the eventual inclusion of 
real-time voice and graphics over the net.

Long-distance, point-to-point leased commu-
nication lines were relatively expensive when the 
Arpanet was designed. This was true even for 
slow-speed lines operating at 1200 or 2400 bits 
per second. The Arpanet was designed and built 
using 50,000 bits per second leased lines, ben-
efiting in part from a reduced tariff available to 
the government. As a result, in addition to less 
time-sensitive applications such as email and file 
transfer, the Arpanet supported the interactive 
use of remote computers and early experiments 
in packetized voice communication and interac-
tive graphics.

Maintaining a high degree of interactivity 
involved numerous technical challenges, including 
the flow control problems described below. But it 
also greatly increased the utility of the network. A 
further benefit is that whenever there were prob-
lems in the operation of the network, they tended 
to show up within seconds, not hours or days.

Interactivity was one of the hallmarks of the 
Arpanet, an unqualified success.

Interactivity: A

Reliability: A separate concern in the design 
of the Arpanet was reliability. While most proj-
ects funded by the IPTO were intended to create 
new capabilities and demonstrate what might be 
possible, some of the projects were intended to 
serve the dual purpose of advancing the science 
and to be usable as tools for the research com-
munity. Several time-sharing systems were devel-
oped within the IPTO community with this dual 

Collaboration tools are 
just one example of the 

open-ended and evolving 
nature of the network. The 

direction set within the 
Arpanet project continued 
full force into the Internet. 

Continual change is stress-
ful, though, and doesn’t 

come for free. 
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purpose, and the Arpanet project followed the 
same path.

Inherent in the dual purpose is a certain tension. 
Researchers interested in how well the network 
worked and particularly how well it functioned 
when pushed to its limits wanted to be able to take 
the network down to test it. However, the rest of 
the research community wanted the network to 
be usable whenever they wanted to use it. It was 
clear from the beginning and became even clearer 
once the network was functioning that availability 
was paramount. Periods of deliberate unavailabil-
ity were scheduled carefully and infrequently. For 
most in the research community it became a utility. 
It had to work almost all the time for almost every-
body. In a 2019 virtual round table, The Arpanet 
and Its Impact on the State of Networking, Ben 
Barker recounts both the necessity and success 
of improving the reliability of the IMPs from 98 to 
99.98 percent [10]. This meant a mere 2 percent 
improvement in uptime but a 99 percent reduction 
in downtime. Compared to the 99.999 percent tar-
get uptime of commercial telephone systems [11] 
99.98 percent may seem modest, but it was suffi-
cient to shift the perception of the Arpanet users 
from “I can’t depend on it” to “It’s almost always 
there when I need it.”

The fact that routes were automatically adjust-
ed whenever a link or a router failed resulted in a 
network that was fairly robust. There were anec-
dotes of the network continuing to work even 
when there was a major natural disaster. After 
the first few years, widespread outages were rare 
to non-existent. The Arpanet, as a utility, was far 
more robust than the computers connected to 
it. The early robustness of the Arpanet resulted 
in both an expectation and the experience base 
to continue a high standard of robustness even 
through the transition from the Arpanet to the 
Internet and the dramatic scaling that followed.

Reliability: A–

Scalability: Scalability, on the other hand, has 
been a more complex story. On one hand, the 
Internet now connects several billion users, rough-
ly half the entire human population [12]. The 
growth has been larger and faster than originally 
anticipated. The address space for designating 
hosts was expanded from eight bits (i.e., a maxi-
mum of 256 hosts) to 32 bits in IPv4 (i.e., a maxi-
mum of four billion hosts), and then again to 128 
bits — a very large number — in IPv6. Unfortunate-
ly, this latter transition has not been smooth, and 
the Internet today operates with an awkward mix-
ture of IPv4 and IPv6 transport protocols. With 
sadness, I must assign just a middling grade.

Scalability: B–

Flow Control: Finally, we come to a difficult 
part of the story, flow control. As mentioned 
above, we discovered right away that even though 
the IMPs implemented flow control to protect 
the subnet from congestion, similar controls were 
needed to manage the flow between the hosts. 
When we designed the flow control within the 
NCP, we were conscious of the wide range of 
capabilities across the collection of hosts. Very 
small hosts, with the TIP as the premier exam-
ple, had very little buffer space but were able to 
respond to interrupts without much delay. Very 

large hosts, with Multics as the premier example, 
had far more capacity but treated interrupts as 
heavy-duty context switches.

We weren’t sure whether to use bits or mes-
sages as the unit of control between hosts, so we 
punted and provided both. That is, the receiving 
side of a connection sent the sending host sepa-
rate allocations of bits and messages; the sender 
would then keep track of how many bits and how 
many messages it had sent. If either quantity was 
exhausted, the sender would pause and await a 
fresh allocation.

We didn’t know what the right settings would 
be. We simply provided the mechanism and 
hoped there would be either practical experience 
or insightful analysis by engineers schooled in 
control theory or other relevant disciplines.

In the transition from NCP to TCP, the meter-
ing of bits changed to the metering of bytes, and 
the metering of messages was dropped. That was 
a simplification but not a solution. As the network 
grew and traffic loads increased, there were an 
increasing number of cases where the perfor-
mance was poor. Throughput was observed to be 
just a minuscule fraction of the channel capacity.

Van Jacobsen and his colleagues analyzed 
the flow control in TCP and identified multiple 
reasons for congestion and delay [13]. They 
developed some principles and algorithms. Perfor-
mance improved dramatically. But that, unfortu-
nately, is not the end of the story.

An ideal scenario for the continuous flow of 
data is having enough space allocated at each 
of the hops along the path so packets can move 
forward at the same rate they enter the system. 
Feedback as the connection is established is used 
to set the flow control parameters.

This ideal scenario suffers from two sources of 
interference. First, there are multiple layers of pro-
tocols, and from a performance perspective they 
interact. A TCP connection may travel part of the 
way over Wi-Fi, part of the way over a wide area 
network, and part of the way through an enterprise 
network. Each of these has its own buffering and 
flow control strategies. We have neither adequate 
theory nor fully practical tools to know how to set 
the parameters at each level of the protocol stack.

The second source of interference is an embar-
rassment of riches. In sharp contrast to the early 
days of the network when memory space in com-
puters was always very tight, memory space has 
become plentiful. It has become commonplace in 
many parts of the network to allocate more buffer 
space than is needed for ideal flows. Consequent-
ly, when there is congestion, it isn’t detected right 
away. Queues build up and take a long time to 
drain. The colorful term “bufferbloat” describes 
this phenomenon [14].

Protocol designers, router vendors, end sys-
tem implementors, and network operators contin-
ue to wrestle with bufferbloat. We need a more 
complete theory and improvements in the control 
structures within the protocols.

With respect to the work done within the 
Arpanet project, this aspect was addressed and 
thus deserves a minimally passing grade, but the 
results were not yet sufficient. Charitably, we can 
say the Arpanet experience demonstrated how 
complicated and challenging this topic is.

Flow Control: C–
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This last section grades the social processes relat-
ed to design, testing, and standards setting. As 
noted above, the Arpanet was funded and man-
aged as a research project to develop both the 
technology and to serve as a usable service to the 
IPTO research community. During the 1965–1968 
planning period, the focus of attention was on 
the architecture of the packet-switching subnet, 
including the use of separate computers to serve 
as routers. The creation of host-level protocols 
and the software to implement them was left as 
a task for the computer scientists at the Arpanet 
sites to address. Questions of how these proto-
cols would be managed, whether there would be 
rules governing changes, and how the implemen-
tations would be tested were not planned out in 
advance. Instead, IPTO management left room for 
the research community to address these issues. 
At the same time, IPTO management retained the 
power of the purse. When successful initiatives 
emerged within the community, IPTO was able 
to provide whatever funding was needed to keep 
those initiatives going. Equally, had the efforts with-
in the research community not succeeded on their 
own, IPTO retained the option of recruiting and 
funding experts to help out.
Three distinct organizational or “social” processes 
emerged:
1. Design by distributed ad hoc groups
2. Testing by interoperability instead of com-

pliance
3. Standards based on market acceptance 

instead of law
Design: The protocol stack was developed at 

first by the graduate students associated with the 
first Arpanet sites. There was no formal structure. 
A handful of us met, engaged in broad discus-
sion at first, and gradually focused on the specific 
details of the NCP, Telnet, and FTP. Our initial 
set of notes were called Requests for Comments 
(RFCs), partly out of recognition that we didn’t 
have any formal authority [15]. All of the interac-
tions were open. Anyone was welcome to attend, 
anyone was welcome to contribute, and the doc-
uments were available to anyone.

In the early days, there weren’t any commer-
cial vendors designing or building network prod-
ucts. Creation of a new protocol was initiated by 
one or more people interested in creating a new 
capability. The IPTO research community used a 
wide variety of computers, so any protocol that 
was going to be useful across the community 
would require multiple implementations. This cre-
ated an environment where it was advantageous 
for multiple people to participate in the design 
and for the design to be as simple as possible.

The layered, open architecture has made it 
possible for independent groups to create proto-
cols without advance permission and with almost 
no coordination. Experimental protocols are cre-
ated frequently. Some evolve into mainstream 
standards; others remain experimental or are used 
by a limited group. The only coordination that’s 
required is in the assignment of identifiers such as 
a protocol number or a port assignment. A very 
lightweight administrative system came into exis-
tence to administer these assignments, now part 
of the standards process described below.

The openness of the design process has made 
possible the explosion of network applications 
and is the embodiment of permissionless inno-
vation. The openness of the design process is 
arguably even more important than any of the 
specific elements of the architecture and design, 
and deserves an extraordinary grade.

Design Process: A+

Testing: As described above, it was necessary 
to implement each protocol on several different 
computers. At first, we didn’t think through how 
to get the implementations to work with each 
other. In October 1971, the Massachusetts Insti-
tute of Technology (MIT) hosted a “bake-off” to 
test the NCP and Telnet implementations. Each 
site sent a representative to MIT and attempted to 
connect their host to each other host. At the end 
of two days of testing, almost all the hosts were 
able to connect to each other.

What we didn’t have at the bake-off was a ref-
erence implementation. Each implementation was 
tested against the others, not just against a des-
ignated “gold standard.” This approach avoided 
the creation of a compliance testing regime that 
usually imposes costs and delays. Later, as the 
Arpanet transformed into the Internet, interopera-
bility testing was embodied in the Interop confer-
ences starting in 1986 [16].

The emergence of interoperability testing, as 
opposed to compliance, is one of the less her-
alded but crucial factors that contributed to the 
Arpanet’s and Internet’s success.

Interoperability Testing: A

Standards: The Arpanet was a research proj-
ect funded at first entirely under the aegis of 
DARPA’s IPTO. As noted above, the users of the 
network were also the developers of the initial 
suite of host-level protocols (e.g., NCP, Telnet, 
NCP). Consensus among the developers was 
reached informally, with IPTO watching at a dis-
tance to see if the work was progressing. Docu-
mentation in the form of RFCs was shared quickly 
and openly. This ad hoc arrangement served as 
a de facto standards process. A bit later, during 
the mid-1970s, the traditional standards organi-
zations, CCITT (now the International Telecom-
munication Union, ITU), IEEE, and International 
Standards Organization (ISO), became involved 
in the standardization of subsequent protocols 
such as X.25, Ethernet, and Open Systems Inter-
connection (OSI).

However, the original informal process that 
was central to the protocol developments for 
the Arpanet continued. The Network Working 
Group, which had started with around a dozen 
people, continued to grow and evolve, formal-
ized in 1986 as the Internet Engineering Task 
Force (IETF). Meetings grew to between 1000 
and 2000 people attending three times per year. 
RFCs became the accepted forum for publishing 
protocol specifications. A lightweight process was 
created to determine when a protocol specifica-
tion had reached maturity and gained consensus 
to be designated as an Internet Standard [17].

The IETF has taken on some but not all of the 
formal attributes of the pre-existing standards 
organizations. Participation in the IETF processes 
is through individuals, not companies or govern-
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ments, and adoption of its standards is driven 
by market forces as opposed to government 
requirements.

Of particular note is the openness of the 
IETF process:
1. The architecture is open. Additions are wel-

comed. There are roughly 100 active work-
ing groups at any given time.

2. Participation is open. Everyone is welcome 
to join any working group or start a new 
working group. New protocol designs are 
judged for completeness and safety, but oth-
erwise, there aren’t any barriers to creating 
new protocols.

3. The documents are open. All documenta-
tion, including working documents, is avail-
able to anyone anywhere without cost.
Not included in the creation of the standards 

process was any form of enforcement. Instead of 
regulation, market forces determine the success 
or failure of new protocols.

Standards Process: A

conclusIon
Without question, the Arpanet was a huge suc-
cess. It provided revolutionary capabilities in its 
own right, and it opened the door for the creation 
and explosive growth of the Internet. And like any 
large project, it spawned many new projects, with 
more report cards to be written. Over the next 50 
years, the functionality and utility of the Internet 
will almost certainly continue to grow. It will have 
challenges along the way — technical challenges 
such as flow control as well political challenges 
as more entities try to assert control over the net-
work. However, with this report card, it is clearly 
ready to graduate to the next level.
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