
IEEE Communications Magazine • December 2021118 0163-6804/21/$25.00 © 2021 IEEE

AbstrAct
This article is a “back to the future” report card

on the Internet’s seedling, the Arpanet. The vision
and goals for the Arpanet are evaluated along
several aspects of functionality, performance,
and evolution. The resulting grades suggest what
direction future evolution might take to allow the
Internet to evolve into what it was intended to be.

IntroductIon
This issue is about predicting the future of the
Internet. I’m going to cheat and talk about pre-
dictions of the future from the perspective of 50
years ago when we were envisioning the net-
work. It’s a cheat, of course, because we now
know how it turned out. At least we know how
the first 50 years turned out. This perspective is
interesting nonetheless because we can gauge
what happened against what we intended and
expected. And let me limit your expectations. This
view is primarily about the technical aspects of
networking. The current concerns about social
networking, privacy invasions, spam, fraud, and so
on appeared quite early but were minor annoy-
ances compared to today’s environment. Those
of us involved in creating the Arpanet and then
the Internet were almost totally focused on creat-
ing the capability and getting it to work.

To make this discussion fun and perhaps contro-
versial, I offer a report card along several aspects of
functionality, performance, and evolution. But first,
let’s go back in time to the creation of the Arpanet.

The Arpanet was DARPA’s ambitious project to
connect its computer science research laboratories
with a general-purpose, highly interactive network.
These few words — computer science, research
laboratories, general-purpose, and highly interac-
tive — may seem bland but carry a lot of content.

In its first few years, DARPA’s focus was on
space technology and other military technologies.
In 1962 the Information Processing Techniques
Office (IPTO) was created, with J.C.R. Licklider
(“Lick”) as the founding director [1].

Although DARPA spent most of its budget on
fast-paced research aimed at significant results with-
in three to seven years, a small portion of its bud-
get was devoted to long-term investment in two
basic technologies — material science and com-
puter science — that would pay off over time. Its
investments in computer science were in the form
of funding several research laboratories — MIT,
CMU, the University of California (UC) Berkeley,
University of Utah, SRI, UC Los Angeles (UCLA),
and others. The institutional support was important
but not sufficient. There was also a vision….

the VIsIon
In the early days of computing, from the late
1940s through the 1950s and early 1960s, com-
puters were expensive and available only to large
organizations — governments, businesses, and uni-
versities. And it was important to keep them busy
doing useful work. The idea of a personal com-
puter was nothing but a dream, closer to science
fiction than a realistic goal.

Commercially, IBM was the dominant comput-
er company. Several other computer companies
— Burrough’s, Control Data Corporation, NCR,
Univac, and others — competed as best they
could. Eventually, they all faded.

These computers were all physically large and
usually required air conditioning. The large ones
lived in specially constructed rooms with false floors
that provided airflow and had room for thick cables.

Keeping them busy meant organizing the
workload in a fashion that staged a queue of jobs
for the computer to carry out. The term of art was
“batch processing.” Programmers prepared pro-
grams by sitting at their desks writing code and
then copying their programs onto punched cards
or paper tape. When the computer was ready to
execute their programs, it read in the program
and then took however long was necessary to
compute the results. The output was often printed
on wide paper and then placed in folders or cub-
byholes for the programmer to retrieve.

Efficiency was paramount. In the earliest days,
programs were written directly in machine instruc-
tions. When high-order languages were intro-
duced, it was understood these new languages
would make it easier to write programs. Still, there
was concern about whether the code generated
by compilers would be competitive with hand-writ-
ten code. The success of Fortran was due in part
to the compiler generating code that met that bar.

The astute reader will have noticed I have not
used the terms “interactive” or “interpretative.” Most
managers of computers considered it wasteful for
the computer to wait for a human to decide what
to do or for the computer to translate source code
to object code interspersed with doing “real” work.

There was, however, a small portion of the
computing community who shared a different
vision. Programming was tedious and prone to
errors. In a batch processing environment, the pro-
grammer might have to wait several hours or even
a full day to get results back, only to discover there
was an error in the program. Suppose — just imag-
ine! — being able to see syntax errors immediately.

Well, as we know, computers have become
drastically smaller, cheaper, and more available.

Stephen D. Crocker

Stephen D. Crocker is with Shinkuro Inc.
Digital Object Identifier:
10.1109/MCOM.001.2100727

Arpanet and Its Evolution — A Report Card

INVITED PAPER

The author provides a “back to
the future” report card on the
Internet’s seedling, the Arpanet.
The vision and goals for the
Arpanet are evaluated along
several aspects of functionality,
performance, and evolution. The
resulting grades suggest what
direction future evolution might
take to allow the Internet to evolve
into what it was intended to be.

CROCKER_LAYOUT.indd 118CROCKER_LAYOUT.indd 118 12/30/21 1:51 PM12/30/21 1:51 PMAuthorized licensed use limited to: Universidad Nacional Autonoma De Mexico (UNAM). Downloaded on August 17,2022 at 17:13:27 UTC from IEEE Xplore. Restrictions apply.

IEEE Communications Magazine • December 2021 119

Everyone reading this article undoubtedly has one
or more personal computers, some of which are
called “phones.” But in the mid-1960s, the idea of
a computer waiting for the human instead of the
other way around was part of a vision understood
and pursued in just a few pockets of academia.

The vision was even more ambitious than just
having a computer at the ready; it included hav-
ing the computer carry some of the mental labor.
At the extreme end, the catchy phrase “artificial
intelligence” (AI) conveyed the idea of computers
thinking, however ill-defined that term might be.
The early work on AI focused on programs that
played checkers and chess, solved symbolic alge-
bra and calculus problems, attempted to make
rudimentary sense of written text, and attempted
to infer the difference between objects and back-
ground in photos.

Toward the more practical end of the spec-
trum, time-sharing systems were developed and
fielded. Similarly, interactive, interpretive languag-
es such as LISP and BASIC were developed and
fielded [2, 3]. In the mid-1960s, these technol-
ogies were in regular use in a few select plac-
es. The difference between those environments
and the common environments of batch pro-
cessing and efficient use of large computers was
like night and day. The Arpanet was part of the
vision of a collaborative environment that sup-
ported interaction between people and comput-
ers, between computers, and, not insignificantly,
between people.

the report cArd
This report card has three sections. I assign grades
in three broad areas: functionality, performance,
and evolution. Each of these has multiple aspects.

FunctIonAlIty
The four aspects are connectivity, protocols, col-
laboration, and extensibility.

Connectivity: Highly interactive computing
was just the beginning of the vision. Comput-
er-to-computer communication, online libraries,
and collaboration across research laboratories
were also part of the vision. How to do all of that
was not as clear. Some hurdles were obvious;
additional hurdles emerged later.

There had been a handful of prior experi-
ments to connect computers together. Most were
unsuccessful, and the others were of limited use
for a short duration. The one that turned out to
be the most useful was a connection between
Lincoln Laboratory in Massachusetts and System
Development Corporation in California. In addi-
tion to solving the problems of getting two dissim-
ilar computers to interact, the work also provided
useful data on the error rates of long-distance
telephone lines.

Finally, in 1965, IPTO decided it was time for a
large-scale effort to connect the computers across
the participating laboratories. The short version
of the decision process, recounted in Hafner’s
and Lyons’ book Where Wizards Stay Up Late, is
that Bob Taylor, the head of IPTO, explained the
concept to his boss, Charles Herzfeld, the director
of DARPA [4]. Herzfeld approved $1,000,000 on
the project. The actual process was more detailed
and extended, and Larry Roberts was recruited
from Lincoln Laboratory to head up the project.

The plan evolved over the next few years. The
key decisions were to use packet switching and
separate small computers, designated interface
message processors (IMPs), as routers. Finally,
in 1968, a formal Request for Quotations (RFQ)
was issued asking companies to design, build, and
operate this network. Bolt, Beranek, and Newman
(BBN) in Massachusetts was selected and began
work in early 1969.

Although there had been a lot of thought
regarding the communications subnet, there were

TABLE 1. Terminology.

ARPA, DARPA — The Defense Advanced Research Projects Agency, was started in 1958
in response to the Russian launch of the first satellite, Sputnik. When it was started, it was
inside the Office of the Secretary of Defense (OSD) and was called the Advanced Research
Projects Agency. In 1972 it was moved out of OSD to become a separate Defense agency
and its name was changed. This was an administrative change with no change in mission
or structure. The name changed back briefly to ARPA in the early 1990s and then back
again a short time later to DARPA. The Arpanet was created when the agency was ARPA,
and in most writings the name of the network remained the same.

FTP (File Transfer Protocol) was one of the earliest defined protocols. The original spec-
ification was written in 1971 by Abhay and ran on NCP. The protocol was later replaced
by a TCP/IP version; while still built into several operating systems, it is increasingly
deprecated across the Internet.

IMP, router — The Arpanet introduced the concept of using a separate computer as a
router. The term “router” was not yet in use. An Arpanet router was called an IMP, Inter-
face Message Processor.

IPTO (Information Processing Techniques Office) was the office within the Advanced
Research Projects Agency that funded advanced computer science research in the 1960s
and 1970s.

Multics (Multiplexed Information and Computing Service) was an influential time-sharing
system that incorporated advanced memory management and security controls.

NCP — Originally, the abbreviation NCP stood for Network Control Program and referred
to the software that had to be added to the operating system of the host to communi-
cate with the IMP and implement the host-host protocol between the hosts. Over time,
the term NCP became repurposed to stand for Network Control Protocol to refer to the
protocol and not the software.

NWG (Network Working Group) — Originally, this designated a small group of principal
investigators who advised IPTO management during the 1965-68 design phase of the
Arpanet design. The same name was then used by the less senior researchers, primarily
graduate students, who developed the original suite of host-level protocols. The NWG
evolved over time from around a dozen people in 1968 to a larger and larger group and
eventually became the Internet Engineering Task Force (IETF).

QUIC is a relatively new protocol created to improve performance for connection-orient-
ed web applications beyond what is possible with TCP.

RFC (Request for Comments) was the term for the informal protocol design memos
written by the Network Working Group. Although originally expected to be a short-lived
set of memos, the RFCs continued and became the formal method of publishing protocol
standards and related articles.

SSH (Secure Shell) was designed as a secure replacement for various insecure remote
shell protocols; SSH has been a common remote access protocol since 1995.

TCP (Transmission Control Protocol) was the successor to the Network Control Protocol,
the original host-host protocol. TCP was byte-oriented, provided two-way, i.e., full-duplex,
communication, error checking, and retransmission if bytes were lost in transmission.

TCP Flag Day — Until 31 December 1982, the hosts on the Arpanet all used the Network
Control Protocol. Starting on 1 January 1983, the hosts all switched over to Transmission
Control Protocol and the underlying Internet Protocol (IP).

TIP (Terminal IMP) was an IMP augmented with 63 ports for terminals. The TIP was the
equivalent of an IMP and host computer that implemented the Telnet protocol to reach
other hosts on the Arpanet.

UDP (User Datagram Protocol) is a protocol parallel to TCP used when error checking
and correction are either not necessary or is performed in the application. Unlike TCP,
UDP does not have handshake dialogues. There is no guarantee of delivery, ordering, or
duplicate protection.

CROCKER_LAYOUT.indd 119CROCKER_LAYOUT.indd 119 12/30/21 1:51 PM12/30/21 1:51 PMAuthorized licensed use limited to: Universidad Nacional Autonoma De Mexico (UNAM). Downloaded on August 17,2022 at 17:13:27 UTC from IEEE Xplore. Restrictions apply.

IEEE Communications Magazine • December 2021120

still areas that needed development. Two of the
obvious hurdles were the lack of suitable hard-
ware interfaces for communication between com-
puters and the differences in formats and data
representation.

There were no standard interfaces and no com-
monality across the operating systems. Operating
systems of the day lived at the centers of their
respective worlds. They had not been designed
with a means of peering with other computers, so
one of our challenges was developing hardware
interfaces and the software structure to support
peering relationships across these diverse systems.

Unlike earlier small-scale network projects, the
Arpanet project involved computers from sev-
eral different vendors. This heterogeneity forced
the creation of a common hardware interface.
For the Arpanet, BBN designed a simple bit-se-
rial interface. Each site designed and fabricated
its half of the connecting hardware. After the
first several of these were built as ad hoc proj-
ects within the research laboratories, commercial
interfaces became available for the most common
machines, notably the Digital Equipment Corpora-
tion (DEC) PDP-10.

Shortly after the Arpanet project started, there
was active research on technologies for local area
networks. The Ethernet design prevailed in the
marketplace, and Sun Microsystems unveiled its
initial product line with Ethernet interfaces on all
its machines. This was a period of vibrant develop-
ment of local area network technology.

Today, every computer comes with one or
more standardized interfaces with the full expec-
tation it will be interacting with other computers,
not just peripheral devices. Without question, the
goal of getting computers connected to other
computers is a complete success and deserves
the maximum grade.

Connectivity: A+

Protocols: The software was a different matter.
I was part of the team of graduate students from
the initial four Arpanet sites tasked with designing
the host-level protocols. In a sense, we were the
customers or users of the Arpanet, but we were

also the builders of the applications that allowed
others to use the Arpanet.

We tried to create a set of building blocks that
would support multiple applications. We expect-
ed others would build on whatever we designed.
We expected the protocols would be designed
and implemented as a series of layers. We expect-
ed most of the layers to be optional, to be used if
they were useful for the application and otherwise
ignored. These presumptions are at the heart of
the open, layered architecture that characterizes
the Internet.

We focused on designing a base layer that
encompassed a virtual circuit to hide the pack-
etized nature of the underlying communications.
We expected the simulation of dial-up to support
login and machine-to-machine file transfer to be
the applications that would use the base layer.
These two protocols, Telnet for remote login and
File Transfer Protocol (FTP), did indeed come into
existence and have served as primary protocols
throughout the history of the Internet. Howev-
er, in recent years, Secure Shell (SSH) and QUIC
have provided substantial improvements in securi-
ty and performance.

The base protocol was initially called the Host-
Host protocol. It later became known as the
Network Control Protocol (NCP). Its basic con-
struct was a one-directional (“simplex”) bit-serial
connection, and a pair of these connections was
required for two-way communication. During the
period when it was designed, eight-bit bytes had
not yet become standard. The NCP was replaced
by the Transmission Control Protocol (TCP) as
part of the evolution of the Arpanet to a network
of networks (i.e., the Internet). By that time, eight-
bit bytes had become standard, and bidirectional
(“full-duplex”) connections in TCP replaced the
simplex connections in NCP.

An essential feature of both NCP and TCP was
flow control. The IMP subnet had its own flow
control to prevent deadlocks due to lack of buffer
space, but it was clear early in the design phase
the computers at the ends also needed a mech-
anism to control the consumption of space. We
provided controls within the NCP and TCP proto-
cols for the receiving side of a connection to sig-
nal how much space was available to the sending
side. More on this below.

These protocols were remarkably robust and
hence deserved a strong grade. That said, they
weren’t perfect, and grading them requires some
discussion. Here are three parts of the architectur-
al design that didn’t work out as expected:
1. The idea of creating a virtual circuit and

then simulating a remote terminal connec-
tion looked simple at first, but we soon real-
ized the abstraction of a virtual circuit had a
weakness. In remote terminal connections,
the user must have a way of interrupting the
computer’s operation. The specific method
varies from one operating system to anoth-
er. Usually, it was a reserved character (e.g.,
control-C, control-Z, or DEL). For “real”
connections, by either hardwire or dial-up
circuits, the operating system recognized
the signal immediately whenever the user
typed an interrupt character. The virtual cir-
cuits we defined as the bottom layer of the
protocol stack included a variable amount

The Timeline

While this article is primarily focused on the original
Arpanet, parts of this report card are best understood in
the context of both the Arpanet and the Internet. Here’s
a very selective and compact timeline.

• 1965-68: Arpanet planning
• August 1968: Request for Quotations for the Interface
 Message Processors (IMPs) and communications subnet
• January 1969: Bolt, Beranek and Newman begins work
 on the IMPs and subnet
• September through December 1969: First four nodes
 installed at UCLA, SRI, UCSB, and Utah
• October 1971: Bake-off at MIT to test interoperability
 of the implementations of NCP and Telnet
• October 1972: Public display of the Arpanet at the
 International Conference on Computer Communication
 (ICCC) meeting in Washington, DC.
• May 1974 first TCP paper
• 1 January 1983: TCP Flag Day

For a more complete timeline, see “A Short History of
the Internet,” https://www.internetsociety.org/internet/
history-internet/

Unlike earlier small-scale
network projects, the

Arpanet project involved
computers from several
different vendors. This

heterogeneity forced the
creation of a common hard-

ware interface.

CROCKER_LAYOUT.indd 120CROCKER_LAYOUT.indd 120 12/30/21 1:51 PM12/30/21 1:51 PMAuthorized licensed use limited to: Universidad Nacional Autonoma De Mexico (UNAM). Downloaded on August 17,2022 at 17:13:27 UTC from IEEE Xplore. Restrictions apply.

IEEE Communications Magazine • December 2021 121

of buffering. There was no guarantee that a
character typed by the user would be seen
immediately — or even eventually — by the
remote operating system. We therefore had
to augment the clean, simple abstraction of
virtual circuits by adding a new channel to
communicate urgent signals.

2. While we were focused on applications
based on virtual circuits, others were focused
on real-time communications, particularly
packetized speech. For these applications,
virtual circuits are a poor match. In the tran-
sition from NCP to TCP, a parallel protocol,
the User Datagram Protocol (UDP), was
designed that did not include flow control
and did not attempt to guarantee delivery.

3. In our early thinking about protocols, we
imagined processes running on multiple
computers cooperating on a common task.
We intended the protocol suite to support
arbitrary peer-to-peer communications, not
just client-server-style applications. The pro-
tocols do provide this support, but it has
turned out to be used relatively rarely.
Flow control deserves its own discussion, so

we close this section on the protocol suite with a
decent but not perfect grade.

Protocol Suite: B+

Collaboration: A key part of the vision was
collaboration among researchers. The network
was envisioned as connecting both computers
and people. Licklider and Taylor, the first and
third directors of the (D)ARPA Information Pro-
cessing Techniques Office (IPTO), wrote their
1968 visionary paper, “The Computer as a Com-
munications Device,” highlighting the focus on
collaboration [5]. Their opening sentence, “In a
few years, men [sic] will be able to communicate
more effectively through a machine than face to
face,” stated their vision succinctly.

The DARPA research community enjoyed a
fair degree of collegiality. The funding came from
a common source, and the Office encouraged
collaboration. Although not considered techni-
cally demanding, electronic mail quickly became
the dominant use of the Arpanet. The prospect
of highly interactive shared graphics and shared
creation of documents fired the imagination.
Douglas Engelbart’s landmark work at SRI, the
second Arpanet site, combining the invention of
the mouse, hypertext, and shared access to doc-
uments, was presented at the ACM/IEEE Com-
puter Society Fall Joint Computer Conference in
San Francisco in December 1968 [6]. It quickly
became known as the “Mother of All Demos” [7].
It would take quite a few years before everyone
had the same capabilities, but the direction was set
early on.

The tools and techniques for collaboration are
still evolving, but it’s fair to say results have been
spectacular.

Collaboration: A

Extensibility: Collaboration tools are just one
example of the open-ended and evolving nature
of the network. The direction set within the
Arpanet project continued full force into the Inter-
net. Continual change is stressful, though, and
doesn’t come for free. How well has the protocol

suite fared under the stresses of extensibility and
scaling? Extensibility has been good, with many
new applications and supporting protocols avail-
able. User-level data used to be limited to text; it
now includes colors, pictures, videos, audio, and
more. And extensibility has included adaptation
to multiple languages and cultures, localized ini-
tiatives, and unlimited new applications. I think it’s
easy to give a very strong grade.

Extensibility: A

perFormAnce
Functionality is essential but not sufficient. Perfor-
mance is also essential. The four aspects of perfor-
mance are interactivity, reliability, scalability, and
flow control.

Interactivity: One of the key design parame-
ters for the Arpanet was the requirement to deliv-
er a message within a half-second. (“Message”
in this context was the term used for the unit of
transfer between a host and an IMP. It was limited
to about 8000 bits. Messages were subdivided
into packets of approximately 1000 bits or less
for transmission over the subnet and reassembled
into messages at the destination IMP.) As noted
above, the Arpanet connected the several DAR-
PA-supported computer science research labs.
Each of these labs had highly interactive time-
shared computers. The Arpanet thus extended
those environments. It would have been possible
to build a network that was much less interac-
tive for the movement of email and files. Indeed,
UUNET and BITNET were successful examples
of this sort of design [8, 9]. However, the goal
for Arpanet included the highly interactive use of
remote computers and the eventual inclusion of
real-time voice and graphics over the net.

Long-distance, point-to-point leased commu-
nication lines were relatively expensive when the
Arpanet was designed. This was true even for
slow-speed lines operating at 1200 or 2400 bits
per second. The Arpanet was designed and built
using 50,000 bits per second leased lines, ben-
efiting in part from a reduced tariff available to
the government. As a result, in addition to less
time-sensitive applications such as email and file
transfer, the Arpanet supported the interactive
use of remote computers and early experiments
in packetized voice communication and interac-
tive graphics.

Maintaining a high degree of interactivity
involved numerous technical challenges, including
the flow control problems described below. But it
also greatly increased the utility of the network. A
further benefit is that whenever there were prob-
lems in the operation of the network, they tended
to show up within seconds, not hours or days.

Interactivity was one of the hallmarks of the
Arpanet, an unqualified success.

Interactivity: A

Reliability: A separate concern in the design
of the Arpanet was reliability. While most proj-
ects funded by the IPTO were intended to create
new capabilities and demonstrate what might be
possible, some of the projects were intended to
serve the dual purpose of advancing the science
and to be usable as tools for the research com-
munity. Several time-sharing systems were devel-
oped within the IPTO community with this dual

Collaboration tools are
just one example of the

open-ended and evolving
nature of the network. The

direction set within the
Arpanet project continued
full force into the Internet.

Continual change is stress-
ful, though, and doesn’t

come for free.

CROCKER_LAYOUT.indd 121CROCKER_LAYOUT.indd 121 12/30/21 1:51 PM12/30/21 1:51 PMAuthorized licensed use limited to: Universidad Nacional Autonoma De Mexico (UNAM). Downloaded on August 17,2022 at 17:13:27 UTC from IEEE Xplore. Restrictions apply.

IEEE Communications Magazine • December 2021122

purpose, and the Arpanet project followed the
same path.

Inherent in the dual purpose is a certain tension.
Researchers interested in how well the network
worked and particularly how well it functioned
when pushed to its limits wanted to be able to take
the network down to test it. However, the rest of
the research community wanted the network to
be usable whenever they wanted to use it. It was
clear from the beginning and became even clearer
once the network was functioning that availability
was paramount. Periods of deliberate unavailabil-
ity were scheduled carefully and infrequently. For
most in the research community it became a utility.
It had to work almost all the time for almost every-
body. In a 2019 virtual round table, The Arpanet
and Its Impact on the State of Networking, Ben
Barker recounts both the necessity and success
of improving the reliability of the IMPs from 98 to
99.98 percent [10]. This meant a mere 2 percent
improvement in uptime but a 99 percent reduction
in downtime. Compared to the 99.999 percent tar-
get uptime of commercial telephone systems [11]
99.98 percent may seem modest, but it was suffi-
cient to shift the perception of the Arpanet users
from “I can’t depend on it” to “It’s almost always
there when I need it.”

The fact that routes were automatically adjust-
ed whenever a link or a router failed resulted in a
network that was fairly robust. There were anec-
dotes of the network continuing to work even
when there was a major natural disaster. After
the first few years, widespread outages were rare
to non-existent. The Arpanet, as a utility, was far
more robust than the computers connected to
it. The early robustness of the Arpanet resulted
in both an expectation and the experience base
to continue a high standard of robustness even
through the transition from the Arpanet to the
Internet and the dramatic scaling that followed.

Reliability: A–

Scalability: Scalability, on the other hand, has
been a more complex story. On one hand, the
Internet now connects several billion users, rough-
ly half the entire human population [12]. The
growth has been larger and faster than originally
anticipated. The address space for designating
hosts was expanded from eight bits (i.e., a maxi-
mum of 256 hosts) to 32 bits in IPv4 (i.e., a maxi-
mum of four billion hosts), and then again to 128
bits — a very large number — in IPv6. Unfortunate-
ly, this latter transition has not been smooth, and
the Internet today operates with an awkward mix-
ture of IPv4 and IPv6 transport protocols. With
sadness, I must assign just a middling grade.

Scalability: B–

Flow Control: Finally, we come to a difficult
part of the story, flow control. As mentioned
above, we discovered right away that even though
the IMPs implemented flow control to protect
the subnet from congestion, similar controls were
needed to manage the flow between the hosts.
When we designed the flow control within the
NCP, we were conscious of the wide range of
capabilities across the collection of hosts. Very
small hosts, with the TIP as the premier exam-
ple, had very little buffer space but were able to
respond to interrupts without much delay. Very

large hosts, with Multics as the premier example,
had far more capacity but treated interrupts as
heavy-duty context switches.

We weren’t sure whether to use bits or mes-
sages as the unit of control between hosts, so we
punted and provided both. That is, the receiving
side of a connection sent the sending host sepa-
rate allocations of bits and messages; the sender
would then keep track of how many bits and how
many messages it had sent. If either quantity was
exhausted, the sender would pause and await a
fresh allocation.

We didn’t know what the right settings would
be. We simply provided the mechanism and
hoped there would be either practical experience
or insightful analysis by engineers schooled in
control theory or other relevant disciplines.

In the transition from NCP to TCP, the meter-
ing of bits changed to the metering of bytes, and
the metering of messages was dropped. That was
a simplification but not a solution. As the network
grew and traffic loads increased, there were an
increasing number of cases where the perfor-
mance was poor. Throughput was observed to be
just a minuscule fraction of the channel capacity.

Van Jacobsen and his colleagues analyzed
the flow control in TCP and identified multiple
reasons for congestion and delay [13]. They
developed some principles and algorithms. Perfor-
mance improved dramatically. But that, unfortu-
nately, is not the end of the story.

An ideal scenario for the continuous flow of
data is having enough space allocated at each
of the hops along the path so packets can move
forward at the same rate they enter the system.
Feedback as the connection is established is used
to set the flow control parameters.

This ideal scenario suffers from two sources of
interference. First, there are multiple layers of pro-
tocols, and from a performance perspective they
interact. A TCP connection may travel part of the
way over Wi-Fi, part of the way over a wide area
network, and part of the way through an enterprise
network. Each of these has its own buffering and
flow control strategies. We have neither adequate
theory nor fully practical tools to know how to set
the parameters at each level of the protocol stack.

The second source of interference is an embar-
rassment of riches. In sharp contrast to the early
days of the network when memory space in com-
puters was always very tight, memory space has
become plentiful. It has become commonplace in
many parts of the network to allocate more buffer
space than is needed for ideal flows. Consequent-
ly, when there is congestion, it isn’t detected right
away. Queues build up and take a long time to
drain. The colorful term “bufferbloat” describes
this phenomenon [14].

Protocol designers, router vendors, end sys-
tem implementors, and network operators contin-
ue to wrestle with bufferbloat. We need a more
complete theory and improvements in the control
structures within the protocols.

With respect to the work done within the
Arpanet project, this aspect was addressed and
thus deserves a minimally passing grade, but the
results were not yet sufficient. Charitably, we can
say the Arpanet experience demonstrated how
complicated and challenging this topic is.

Flow Control: C–

CROCKER_LAYOUT.indd 122CROCKER_LAYOUT.indd 122 12/30/21 1:51 PM12/30/21 1:51 PMAuthorized licensed use limited to: Universidad Nacional Autonoma De Mexico (UNAM). Downloaded on August 17,2022 at 17:13:27 UTC from IEEE Xplore. Restrictions apply.

IEEE Communications Magazine • December 2021 123

eVolutIon

This last section grades the social processes relat-
ed to design, testing, and standards setting. As
noted above, the Arpanet was funded and man-
aged as a research project to develop both the
technology and to serve as a usable service to the
IPTO research community. During the 1965–1968
planning period, the focus of attention was on
the architecture of the packet-switching subnet,
including the use of separate computers to serve
as routers. The creation of host-level protocols
and the software to implement them was left as
a task for the computer scientists at the Arpanet
sites to address. Questions of how these proto-
cols would be managed, whether there would be
rules governing changes, and how the implemen-
tations would be tested were not planned out in
advance. Instead, IPTO management left room for
the research community to address these issues.
At the same time, IPTO management retained the
power of the purse. When successful initiatives
emerged within the community, IPTO was able
to provide whatever funding was needed to keep
those initiatives going. Equally, had the efforts with-
in the research community not succeeded on their
own, IPTO retained the option of recruiting and
funding experts to help out.
Three distinct organizational or “social” processes
emerged:
1. Design by distributed ad hoc groups
2. Testing by interoperability instead of com-

pliance
3. Standards based on market acceptance

instead of law
Design: The protocol stack was developed at

first by the graduate students associated with the
first Arpanet sites. There was no formal structure.
A handful of us met, engaged in broad discus-
sion at first, and gradually focused on the specific
details of the NCP, Telnet, and FTP. Our initial
set of notes were called Requests for Comments
(RFCs), partly out of recognition that we didn’t
have any formal authority [15]. All of the interac-
tions were open. Anyone was welcome to attend,
anyone was welcome to contribute, and the doc-
uments were available to anyone.

In the early days, there weren’t any commer-
cial vendors designing or building network prod-
ucts. Creation of a new protocol was initiated by
one or more people interested in creating a new
capability. The IPTO research community used a
wide variety of computers, so any protocol that
was going to be useful across the community
would require multiple implementations. This cre-
ated an environment where it was advantageous
for multiple people to participate in the design
and for the design to be as simple as possible.

The layered, open architecture has made it
possible for independent groups to create proto-
cols without advance permission and with almost
no coordination. Experimental protocols are cre-
ated frequently. Some evolve into mainstream
standards; others remain experimental or are used
by a limited group. The only coordination that’s
required is in the assignment of identifiers such as
a protocol number or a port assignment. A very
lightweight administrative system came into exis-
tence to administer these assignments, now part
of the standards process described below.

The openness of the design process has made
possible the explosion of network applications
and is the embodiment of permissionless inno-
vation. The openness of the design process is
arguably even more important than any of the
specific elements of the architecture and design,
and deserves an extraordinary grade.

Design Process: A+

Testing: As described above, it was necessary
to implement each protocol on several different
computers. At first, we didn’t think through how
to get the implementations to work with each
other. In October 1971, the Massachusetts Insti-
tute of Technology (MIT) hosted a “bake-off” to
test the NCP and Telnet implementations. Each
site sent a representative to MIT and attempted to
connect their host to each other host. At the end
of two days of testing, almost all the hosts were
able to connect to each other.

What we didn’t have at the bake-off was a ref-
erence implementation. Each implementation was
tested against the others, not just against a des-
ignated “gold standard.” This approach avoided
the creation of a compliance testing regime that
usually imposes costs and delays. Later, as the
Arpanet transformed into the Internet, interopera-
bility testing was embodied in the Interop confer-
ences starting in 1986 [16].

The emergence of interoperability testing, as
opposed to compliance, is one of the less her-
alded but crucial factors that contributed to the
Arpanet’s and Internet’s success.

Interoperability Testing: A

Standards: The Arpanet was a research proj-
ect funded at first entirely under the aegis of
DARPA’s IPTO. As noted above, the users of the
network were also the developers of the initial
suite of host-level protocols (e.g., NCP, Telnet,
NCP). Consensus among the developers was
reached informally, with IPTO watching at a dis-
tance to see if the work was progressing. Docu-
mentation in the form of RFCs was shared quickly
and openly. This ad hoc arrangement served as
a de facto standards process. A bit later, during
the mid-1970s, the traditional standards organi-
zations, CCITT (now the International Telecom-
munication Union, ITU), IEEE, and International
Standards Organization (ISO), became involved
in the standardization of subsequent protocols
such as X.25, Ethernet, and Open Systems Inter-
connection (OSI).

However, the original informal process that
was central to the protocol developments for
the Arpanet continued. The Network Working
Group, which had started with around a dozen
people, continued to grow and evolve, formal-
ized in 1986 as the Internet Engineering Task
Force (IETF). Meetings grew to between 1000
and 2000 people attending three times per year.
RFCs became the accepted forum for publishing
protocol specifications. A lightweight process was
created to determine when a protocol specifica-
tion had reached maturity and gained consensus
to be designated as an Internet Standard [17].

The IETF has taken on some but not all of the
formal attributes of the pre-existing standards
organizations. Participation in the IETF processes
is through individuals, not companies or govern-

CROCKER_LAYOUT.indd 123CROCKER_LAYOUT.indd 123 12/30/21 1:51 PM12/30/21 1:51 PMAuthorized licensed use limited to: Universidad Nacional Autonoma De Mexico (UNAM). Downloaded on August 17,2022 at 17:13:27 UTC from IEEE Xplore. Restrictions apply.

IEEE Communications Magazine • December 2021124

ments, and adoption of its standards is driven
by market forces as opposed to government
requirements.

Of particular note is the openness of the
IETF process:
1. The architecture is open. Additions are wel-

comed. There are roughly 100 active work-
ing groups at any given time.

2. Participation is open. Everyone is welcome
to join any working group or start a new
working group. New protocol designs are
judged for completeness and safety, but oth-
erwise, there aren’t any barriers to creating
new protocols.

3. The documents are open. All documenta-
tion, including working documents, is avail-
able to anyone anywhere without cost.
Not included in the creation of the standards

process was any form of enforcement. Instead of
regulation, market forces determine the success
or failure of new protocols.

Standards Process: A

conclusIon
Without question, the Arpanet was a huge suc-
cess. It provided revolutionary capabilities in its
own right, and it opened the door for the creation
and explosive growth of the Internet. And like any
large project, it spawned many new projects, with
more report cards to be written. Over the next 50
years, the functionality and utility of the Internet
will almost certainly continue to grow. It will have
challenges along the way — technical challenges
such as flow control as well political challenges
as more entities try to assert control over the net-
work. However, with this report card, it is clearly
ready to graduate to the next level.

Acknowledgments
I’m grateful for the comments and collaborative
assistance of friends and colleagues: Scott Brad-
ner, Vint Cerf, Dave Crocker, Heather Flanagan,
Robert Kahn, Dan Lynch, Bob Metcalfe, Dave
Reed, and Dave Täht. Errors, omissions, confu-
sions, and such are solely mine.

reFerences
[1] M. Mitchell Waldrop, The Dream Machine, Stripe Press, 2001.
[2] D. Hemmendinger, “LISP,” Encyclopedia Britannica, n.d.;

https://www.britannica.com/technology/LISP-computer-lan-
guage, accessed 20 July 2021.

[3] Britannica, T. Editors of Encyclopaedia, “BASIC,” Encyclope-
dia Britannica, n.d.; https://www.britannica.com/technolo-
gy/BASIC, accessed 20 July 2021.

[4] K. Hafner and M. Lyon, Where Wizards Stay up Late, Simon
& Schuster Paperbacks, 2006.

[5] J. Licklider and R. Taylor, “The Computer as a Communica-
tions Device,” Science and Technology, vol. 76, 1968, pp.
21–31.

[6] D. Engelbart and W. English, “A Research Center for Aug-
menting Human Intellect,” Int’l. Wksp. Managing Require-
ments Knowledge, , San Francisco, CA, 1968, p. 395;
https://dx.doi.org/10.1109/AFIPS.1968.52.

[7] E. S. Hintz, “The Mother of All Demos,” Smithsonian Institu-
tion,10 Dec. 2018; https://invention.si.edu/mother-all-dem-
os, accessed 20 July 2021.

[8] Wikipedia Contributors, “UUNET,” Wikipedia, The Free
Encyclopedia; https://en.wikipedia.org/w/index.php?title=U-
UNET&oldid=1013880594, accessed July 20, 2021.

[9] Wikipedia Contributors, “BITNET,” Wikipedia, The Free Ency-
clopedia; https://en.wikipedia.org/w/index.php?title=BIT-
NET&oldid=1031287836, accessed July 20, 2021.

[10] S. D. Crocker, “The Arpanet and Its Impact on the State of
Networking,” IEEE Computer, vol. 52, no. 10, Oct. 2019, pp.
14–23; http://dx.doi.org/10.1109/MC.2019.2931601.

[11] Wikipedia Contributors, “Plain Old Telephone Service,”
Wikipedia, The Free Encyclopedia; https://en.wikipedia.
org/w/index.php?title=Plain_old_telephone_service&ol-
did=1047467774, accessed Oct. 2, 2021.

[12] J. Johnson, “Global Digital Population as of January 2021
(in Billions),” Statista, 7 Apr. 2021; https://www.statista.
com/statistics/617136/digital-population-worldwide/,
accessed 19 July 2021.

[13] V. Jacobson, “Congestion Avoidance and Control,” Symp.
Proc. Commun. Architectures and Protocols — SIGCOMM
’88, 1988; http://dx.doi.org/10.1145/52324.52356.

[14] The Bufferbloat Community, “Bufferbloat”; https://www.
bufferbloat.net/projects/, accessed 20 July 2021.

[15] RFC Editor, “History”; https://www.rfc-editor.org/history/,
accessed 19 July 2021.

[16] J., Markoff, “Up from the Computer Underground,” The
New York Times, 27 Aug. 1993, https://www.nytimes.
com/1993/08/27/business/up-from-the-computer-under-
ground.html, accessed 29 Sept. 2021.

[17] “Standards Process,” IETF; https://www.ietf.org/standards/
process/, accessed 27 Oct. 2021.

bIogrAphy
Steve CroCker (steve@shinkuro.com) is an Internet pioneer
who helped develop the protocols for the Arpanet and creat-
ed the RFC Series that document Internet protocols. He has
worked in research, government, and business for the past 50
years. He has specialized in network security research. He was
the founding Chair of ICANN’s Security and Stability Commit-
tee, and was a member of the ICANN Board and Chair of the
Board from 2011 to 2017. He holds a B.A. in mathematics
and a Ph.D. in computer science from UCLA. For the past four
years, he has been working with a small group to develop the
framework for expressing and analyzing registration data direc-
tory service policies.

CROCKER_LAYOUT.indd 124CROCKER_LAYOUT.indd 124 12/30/21 1:51 PM12/30/21 1:51 PMAuthorized licensed use limited to: Universidad Nacional Autonoma De Mexico (UNAM). Downloaded on August 17,2022 at 17:13:27 UTC from IEEE Xplore. Restrictions apply.

